54 research outputs found

    A novel A792D mutation in the CSF1R gene causes hereditary diffuse leukoencephalopathy with axonal spheroids characterized by slow progression

    Get PDF
    Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal dominant white matter disease that causes adult-onset cognitive impairment. The clinical manifestations are a variable combination of personality and behavioral changes, cognitive decline, parkinsonism, spasticity, and epilepsy. In 2012, mutations in the gene encoding colony stimulating factor 1 receptor (CSF1R) were identified as the cause of HDLS. As the numbers of reported mutations are limited, the understanding of whole pathogenesis needs accumulation of disease-causing mutations with detailed clinical descriptions. We describe a Japanese family with autosomal dominant adult-onset cognitive impairment and characteristic white matter lesions. Genetic testing revealed a novel p.A792D mutation in the tyrosine kinase domain of CSF1R in two affected family members. The symptom profile of the present cases mostly matched the previously reported cases, with the notable exceptions of late-onset and long disease duration

    Differential Roles for Parietal and Occipital Cortices in Visual Working Memory

    Get PDF
    Visual working memory (VWM) is known as a highly capacity-limited cognitive system that can hold 3–4 items. Recent studies have demonstrated that activity in the intraparietal sulcus (IPS) and occipital cortices correlates with the number of representations held in VWM. However, differences among those regions are poorly understood, particularly when task-irrelevant items are to be ignored. The present fMRI-based study investigated whether memory load-sensitive regions such as the IPS and occipital cortices respond differently to task-relevant information. Using a change detection task in which participants are required to remember pre-specified targets, here we show that while the IPS exhibited comparable responses to both targets and distractors, the dorsal occipital cortex manifested significantly weaker responses to an array containing distractors than to an array containing only targets, despite that the number of objects presented was the same for the two arrays. These results suggest that parietal and occipital cortices engage differently in distractor processing and that the dorsal occipital, rather than parietal, activity appears to reflect output of stimulus filtering and selection based on behavioral relevance

    Quantitative and qualitative evaluation of sequential PET/MRI using a newly developed mobile PET system for brain imaging

    Get PDF
    [Purpose]To evaluate the clinical feasibility of a newly developed mobile PET system with MR-compatibility (flexible PET; fxPET), compared with conventional PET (cPET)/CT for brain imaging.[Methods]Twenty-one patients underwent cPET/CT with subsequent fxPET/MRI using 18F-FDG. As qualitative evaluation, we visually rated image quality of MR and PET images using a four-point scoring system. We evaluated overall image quality for MR, while we evaluated overall image quality, sharpness and lesion contrast. As quantitative evaluation, we compared registration accuracy between two modalities [(fxPET and MRI) and (cPET and CT)] measuring spatial coordinates. We also examined the accuracy of regional 18F-FDG uptake.[Results]All acquired images were of diagnostic quality and the number of detected lesions did not differ significantly between fxPET/MR and cPET/CT. Mean misregistration was significantly larger with fxPET/MRI than with cPET/CT. SUVmax and SUVmean for fxPET and cPET showed high correlations in the lesions (R = 0.84, 0.79; P < 0.001, P = 0.002, respectively). In normal structures, we also showed high correlations of SUVmax (R = 0.85, 0.87; P < 0.001, P < 0.001, respectively) and SUVmean (R = 0.83, 0.87; P < 0.001, P < 0.001, respectively) in bilateral caudate nuclei and a moderate correlation of SUVmax (R = 0.65) and SUVmean (R = 0.63) in vermis.[Conclusions]The fxPET/MRI system showed image quality within the diagnostic range, registration accuracy below 3 mm and regional 18F-FDG uptake highly correlated with that of cPET/CT

    Functional relevance of the precuneus in verbal politeness.

    Get PDF
    Non-competitive and non-threatening aspects of social hierarchy, such as politeness, are universal among human cultures, and might have evolved from ritualized submission in primates; however, these behaviors have rarely been studied. Honorific language is a type of polite linguistic communication that plays an important role in human social interactions ranging from everyday conversation to international diplomacy. Here, functional magnetic resonance imaging (fMRI) revealed selective precuneus activation during a verbal politeness judgment task, but not other linguistic-judgment or social-status recognition tasks. The magnitude of the activation was correlated with the task performance. Functional suppression of the activation using cathodal transcranial direct-current stimulation reduced performance in the politeness task. These results suggest that the precuneus is an essential hub of the verbal politeness judgment

    Brain MRI with Quantitative Susceptibility Mapping: Relationship to CT Attenuation Values

    Get PDF
    [Background]: Quantitative susceptibility mapping (QSM) is used to differentiate between calcification and iron deposits. Few studies have examined the relationship between CT attenuation values and magnetic susceptibility in such materials. Purpose: To assess the relationship among metal concentration, CT attenuation values, and magnetic susceptibility in paramagnetic and diamagnetic phantoms, and the relationship between CT attenuation values and susceptibility in brain structures that have paramagnetic or diamagnetic properties. [Materials and Methods]: In this retrospective study, CT and MRI with QSM were performed in gadolinium and calcium phantoms, patients, and healthy volunteers between June 2016 and September 2017. In the phantom study, we evaluated correlations among metal concentration, CT attenuation values, and susceptibility. In the human study, Pearson and Spearman correlations were performed to assess the relationship between CT attenuation values and susceptibility in regions of interest placed in the globus pallidus (GP), putamen, caudate nucleus, substantia nigra, red nucleus, dentate nucleus, choroid plexus, and hemorrhagic and calcified lesions. [Results]: Eighty-four patients (mean age, 64.8 years 6 19.6; 49 women) and 20 healthy volunteers (mean age, 72.0 years 6 7.6; 11 men) were evaluated. In the phantoms, strong linear correlations were identified between gadolinium concentration and CT and MRI QSM values (R2 = 0.95 and 0.99, respectively; P , .001 for both) and between calcium concentration and CT and MRI QSM values (R2 = 0.89 [P = .005] and R2 = 0.98 [P , .001], respectively). In human studies, positive correlations between CT attenuation values and susceptibility were observed in the GP (R2 = 0.52, P , .001) and in hemorrhagic lesions (R2 = 0.38, P , .001), and negative correlations were found in the choroid plexus (R2 = 0.53, P , .001) and in calcified lesions (R2 = 0.38, P = .009). [Conclusion]: CT attenuation values showed a positive correlation with susceptibility in the globus pallidus and hemorrhagic lesions and negative correlation in the choroid plexus and calcified lesions

    Pathophysiology of unilateral asterixis due to thalamic lesion.

    Get PDF
    [Objective]:Unilateral asterixis has been reported in patients with thalamic lesion. This study aims at elucidating the pathophysiology of the thalamic asterixis. [Methods]:Two cases with unilateral asterixis caused by an infarction in the lateral thalamus were studied by analysing the asterixis-related cortical activities, transcranial magnetic stimulation (TMS) for motor cortex excitability and probabilistic diffusion tractography for the thalamo-cortical connectivity. [Results]:Averaging of electroencephalogram (EEG) time-locked to the asterixis revealed rhythmic oscillations of a beta band at the central area contralateral to the affected hand. TMS revealed a decrease in the motor evoked potential (MEP) amplitude and a prolongation of the silent period (SP). The anatomical mapping of connections between the thalamus and cortical areas using a diffusion-weighted image (DWI) showed that the lateral thalamus involved by the infarction was connected to the premotor cortex, the primary motor cortex (M1) and the primary somatosensory cortex (S1) of the corresponding hemisphere. [Conclusions]:The thalamic asterixis is mediated by the sensorimotor cortex, which is subjected to excessive inhibition as a result of the thalamic lesion involving the ventral lateral nucleus. [Significance]:This is the first demonstration of participation of the sensorimotor cortex in the generation of asterixis due to the lateral thalamic lesion

    Neuromelanin‐Sensitive Magnetic Resonance Imaging Using DANTE Pulse

    Get PDF
    BACKGROUND: Neuromelanin-sensitive magnetic resonance imaging techniques have been developed but currently require relatively long scan times. The aim of this study was to assess the ability of black-blood delay alternating with nutation for tailored excitation-prepared T1-weighted variable flip angle turbo spin echo (DANTE T1-SPACE), which provides relatively high resolution with a short scan time, to visualize neuromelanin in the substantia nigra pars compacta (SNpc). METHODS: Participants comprised 49 healthy controls and 25 patients with Parkinson's disease (PD). Contrast ratios of SNpc and hyperintense SNpc areas, which show pixels brighter than thresholds, were assessed between DANTE T1-SPACE and T1-SPACE in healthy controls. To evaluate the diagnostic ability of DANTE T1-SPACE, the contrast ratios and hyperintense areas were compared between healthy and PD groups, and receiver operating characteristic analyses were performed. We also compared areas under the curve (AUCs) between DANTE T1-SPACE and the previously reported gradient echo neuromelanin (GRE-NM) imaging. Each analysis was performed using original images in native space and images transformed into Montreal Neurological Institute space. Values of P < 0.05 were considered significant. RESULTS: DANTE T1-SPACE showed significantly higher contrast ratios and larger hyperintense areas than T1-SPACE. On DANTE T1-SPACE, healthy controls showed significantly higher contrast ratios and larger hyperintense areas than patients with PD. Hyperintense areas in native space analysis achieved the best AUC (0.94). DANTE T1-SPACE showed AUCs as high as those of GRE-NM. CONCLUSIONS: DANTE T1-SPACE successfully visualized neuromelanin of the SNpc and showed potential for evaluating PD. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Two-Minute Quantitative Susceptibility Mapping From Three-Dimensional Echo-Planar Imaging: Accuracy, Reliability, and Detection Performance in Patients With Cerebral Microbleeds

    Get PDF
    Objectives: The aim of this study was to assess the accuracy, reliability, and cerebral microbleed (CMB) detection performance of 2-minute quantitative susceptibility mapping (QSM) from 3-dimensional echo-planar imaging (3D-EPI). Materials and Methods: Gadolinium phantom study was conducted using 3D-EPI, single–echo time (TE), and multi-TE gradient-recalled echo (GRE) sequences on two 3-T magnetic resonance (MR) scanners to assess the accuracy between measured and theoretical susceptibility values. The institutional review board approved this prospective study, and 40 healthy volunteers were enrolled with written consent between April 2018 and October 2019. Each underwent 3D-EPI, single-TE, and multi-TE GRE sequences consecutively on one 3-T MR scanner, and QSMs were calculated to assess the reliability of 3D-EPI QSM. Intraclass correlation coefficient (ICC), linear regression, and Bland-Altman plots were calculated. Patients with CMB who underwent both 3D-EPI and GRE QSM scans were retrospectively enrolled. Two radiologists evaluated images independently, and Cohen κ coefficients were calculated to compare CMB detection performance. Results: Phantom study showed excellent validity of 3D-EPI QSM on both MR scanners: Skyra, R2 = 0.996, P < 0.001, ICC = 0.997, mean difference, −2 ppb (95% confidence interval [CI], −45 to 40 ppb); Prisma, R2 = 0.992, P < 0.001, ICC = 0.988, mean difference, 15 ppb (95% CI, −67 to 97 ppb). A human study of 40 healthy volunteers (59 ± 13 years, 25 women) showed excellent reliability with 3D-EPI QSM for both single-TE and multi-TE GRE (R2 = 0.981, P < 0.001, ICC = 0.988; R2 = 0.983, P < 0.001, ICC = 0.990, respectively), supported by a Bland-Altman mean difference of 4 ppb (95% CI, −15 to 23 ppb) for single-TE GRE and 3 ppb (95% CI, −15 to 20 ppb) for multi-TE GRE. The CMB detection performance evaluation from 38 patients (51 ± 20 years, 20 women) showed almost perfect agreement between 3D-EPI and GRE QSM for both raters (κ = 0.923 and 0.942, P < 0.001). Conclusions: Faster QSM from 3D-EPI demonstrated excellent accuracy, reliability, and CMB detection performance

    Altered awareness of action in Parkinson’s disease: evaluations by explicit and implicit measures

    Get PDF
    Deficits in the integration of motor prediction and its feedback have been reported in Parkinson's disease. Conscious awareness of action is proposed to emerge under the integration of motor prediction and its feedback. Thus, it may lead to changes in the awareness of the authorship of action (in other words, the sense of agency) in Parkinson's disease. We have employed both explicit and implicit measures to assess the awareness of action in Parkinson's disease and matched controls. As an explicit measure, an action recognition task requiring explicit judgments was used. Patients showed less attribution of their movements to non-biased and angular-biased visual feedbacks. As an implicit measure, the temporal attraction between the perceived time of actions and their effects, which is known as intentional binding task, was used. While action-effect association was observed in the control group, actions were not experienced as having shifted towards their subsequent effects in the patient group. These tendencies were consistent regardless of the side of the asymmetrical motor symptoms. These results may reflect an underlying abnormality in the awareness of voluntary action in Parkinson's disease

    Insertable inductively coupled volumetric coils for MR microscopy in a human 7T MR system

    Get PDF
    PURPOSE: To demonstrate the capability of insertable inductively coupled volumetric coils for MR microscopy in a human 7T MR system. METHODS: Insertable inductively coupled volume coils with diameters of 26 and 64 mm (D26 and D64 coils) targeted for monkey and mouse brain specimen sizes were designed and fabricated. These coils were placed inside the imaging volume of a transmit/receive knee coil without wired connections to the main system. Signal-to-noise ratio (SNR) evaluations were conducted with and without the insertable coils, and the g-factor maps of parallel imaging (PI) were also calculated for the D64 coil. Brain specimens were imaged using 3D T 2 ∗ -weighted images with spatial resolution of isotropic 50 and 160 μm using D26 and D64 coils, respectively. RESULTS: Relative average (SD) SNRs compared with knee coil alone were 12.54 (0.30) and 2.37 (0.05) at the center for the D26 and D64 coils, respectively. The mean g-factors of PI with the D64 coil for the factor of 2 were less than 1.1 in the left-right and anterior-posterior directions, and around 1.5 in the superior-inferior direction or when the PI factor of 3 was used. Acceleration in two directions showed lower g-factors but suffered from intrinsic low SNR. Representative T 2 ∗ -weighted images of the specimen showed structural details. CONCLUSION: Inductively coupled small diameter coils insertable to the knee coil demonstrated high SNR and modest PI capability. The concept was successfully used to visualize fine structures of the brain specimen. The insertable coils are easy to handle and enable MR microscopy in a human whole-body 7T MRI system
    corecore